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Developments in
kidney xenotransplantation
Haiyan Xu and Xiaozhou He*

Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China
The search for kidney xenografts that are appropriate for patients with end-stage

renal disease has been ongoing since the beginning of the last century. Themajor

cause of xenograft loss is hyperacute and acute rejection, and this has almost

been overcome via scientific progress. The success of two pre-clinical trials of

a1,3-galactosyltransferase gene-knockout porcine kidneys in brain-dead

patients in 2021 triggered research enthusiasm for kidney xenotransplantation.

This minireview summarizes key issues from an immunological perspective: the

discovery of key xenoantigens, investigations into key co-stimulatory signal

inhibition, gene-editing technology, and immune tolerance induction. Further

developments in immunology, particularly immunometabolism, might help

promote the long-term outcomes of kidney xenografts.
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1 Introduction

Xenotransplantation can play key roles in reducing the kidney donor shortage. Since

the first kidney xenotransplant in 1906 (1), great strides have led to achievements in

xenotransplantation such that the risk of hyperacute and acute rejection is almost overcome

(2, 3). Significant progress has been made in key issues in xenotransplantation (4–6).

Important events in kidney xenotransplantation and the advancements of immunological

theories and techniques in corresponding periods are listed in Figure 1.

Here we especially discuss the pivotal developments of kidney xenotransplantation

from an immunological perspective (Table 1).
2 Key xenoantigens

The recognition of xenoantigens involved in hyperacute rejection has been a long and

tortuous road. The first interzygotic twin transplantation in 1953 resulted in long recipient

survival and revealed a new direction for organ transplantation. With the discovery and

application of immunosuppressive agents, hyperacute rejection after allotransplantation

could be controlled, and the survival of recipients gradually increased. However, hyperacute
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rejection after xenotransplantation cannot be controlled by the

empirical application of immunosuppressive agents (7).

Recipient rabbits treated with homogenized guinea pig liver

mixtures survived longer after guinea pig kidney grafts were

transplanted (8). This inspired many attempts to reduce

hyperacute rejection of xenografts, such as the selective removal

of plasma components (9), elimination of extant antibodies,

inhibition of coagulation, as well as the synthesis of complement

and antibodies (10). The results suggested that hyperacute rejection

of xenografts is strongly associated with donor antigens, plasma

composition, and antibody synthesis, similar to hyperacute

rejection during allotransplantation.
2.1 a-Gal antigen

The red blood cell surface galactose antigen (DGala1→3DGal)

that induces hyperacute homotransplant rejection due to an ABO

mismatch was identified in the late 1980s (11). During

xenotransplantation, hyperacute rejection results in an abnormal

increase in immunoglobulin (Ig)M serum levels rather than in IgG
Frontiers in Immunology 02
levels. This indicates that the recipient’s immune system first

recognizes the specific antigens harbored in xenografts.

Due to the emergence of monoclonal antibodies (mAbs) using

hybridomas, human anti-swine antibodies waere generated and used

to iden t i f y s i gn ifican t ca rbohydra t e s t ruc tu re s fo r

xenotransplantation (12). Then the a-galactosyltransferase (a-Gal)
was found, which is encoded by the a-1,3-galactosyltransferase
(GGTA1) gene (13). Other carbohydrate antigens, such as non-

fucosylated chondroitin sulfate monolayers and linear antigens, are

also found, locating on the surfaces of all porcine vascular

endothelial cells. These antigens tightly bind to anti-Gal isogalectin

b4 antibodies and specifically bind to natural, human anti-a-Gal
antibodies. Gal epitopes are expressed abundantly in the brush

margins of proximal convoluted tubules, moderately in distal

convoluted tubules, and not at all in renal collecting tubules and

glomeruli. A specific antigen-antibody reaction activates the

complement system, leading to a powerful cytotoxic effect that

leads to hyperacute grafts (14–18). The discovery of the a-Gal
antigen was a major breakthrough in xenotransplantation.

Thereafter, considerable efforts were directed toward decreasing

hyperacute rejection of kidney xenotransplants by removing anti-
FIGURE 1

Timeline of developments in kidney xenotransplantation 1906-2022.
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porcine antibodies in vitro, short-term infusions of specific

carbohydrates (19), or the absorption of anti-xenoantigen

antibodies produced in the spleen and kidneys (20). Soluble Gal

proteins can partially inhibit human rejection of porcine kidneys.

Intravenous infusions of bovine serum albumin-Gal in vivo can

essentially maintain the depletion of circulating anti-Gal antibodies

and prevent or delay antibody deposition and the acute humoral

rejection of pig-to-baboon xenografts, but it might be associated

with liver damage (21).
2.2 Non-a-galantigens (Neu5Gc, CMAH
and B4GalNT2)

Transgenic technology was established in 1981 using

microinjections; and a transgenic mouse model was created in

1982. The first generation of the gene-editing tool, zinc finger

nuclease, was introduced during the late 1990s, and another,

transcriptional activator-like effector nuclease, was identified in

2009. These gene-editing techniques had a positive global impact

on life sciences.

Pigs with a-Gal knockout (a-Gal-/-, GTKO) are important

xenotransplantation models (22–24). In the a-Gal-/- pigs to

baboon kidney xenotransplantation models, most recipients did

not develop hyperacute rejection; however, they succumbed to acute

humoral rejection. The significantly increased abundance of

peripheral anti-non-a-Gal antibodies in recipients suggested that

non-a-Gal antigens in kidney xenografts might trigger the

production of large amounts of corresponding antibodies.

Thereafter, non-a-Gal antigens were recognized as obstacles to a-
Gal-/- pig organ xenotransplantation (25). The a-Gal antigen is

crucial for hyperacute rejection, and non-a-Gal antigens play

important roles in humoral rejection of xenotransplants. In

addition to a-Gal and non-a-Gal, other carbohydrate antigens

have a complex spatial distribution in porcine kidneys and are

strongly associated with the outcome of porcine kidney

xenotransplantation (26).
Frontiers in Immunology 03
Non-a-Gal antigens, such as N-glycolylneuraminic acid

(Neu5Gc; HD antigen), encoded by the cytidine monophospho-N-

acetylneuraminic acid hydroxylase (cMAH) gene have been identified

(27, 28). Compared with GGTA1-/- pig xenotransplantation, humoral

rejection is reduced in GGTA1-/-/CMAH-/- pigs xenotransplantation

(29), implying that the immune heritability of the Neu5Gc antigen

po ten t i a l l y p l ay s an impor tan t ro l e in p i g -human

xenotransplantation. The other carbohydrate non-a-Gal antigen,
glycosyltransferase, (SD(a) antigen), is encoded by the b-1,4-N-
acetyl-galactosaminyl transferase (B4GalNT2) gene (30, 31).

Clustered regularly interspaced short palindromic repeats

(CRISPR)-associated protein (Cas9) is a third-generation gene-

editing tool. Porcine embryonic fibroblasts with GGTA1-/-/Gal-/-

were initially created using CRISPR/Cas9 in 2014 (32). Since then,

CRISPR/Cas9 has become the preferred means of generating

genetically engineered pigs. The serum of many waitlisted

patients contained only a minimal number of antibodies that

reacted with peripheral blood mononuclear cells from GGTA1-/-/

CMAH-/-/B4GalNT2-/- pigs. However, anti-human leukocyte

antigen antibodies in some sensitized patients cross-reacted with

porcine major histocompatibility complex (MHC) I antibodies

(33). Pigs with simultaneous MHC and three antigen (GGTA1/

CMAH/B4GalNT2) inactivation have been generated using the

CRISPR/Cas method (34). Natural and inducible anti-SDa plays

important roles in GTKO pig-to-rhesus monkey xenotransplant

rejection, thus providing further support for the notion that Gal

and SDa antigens should be simultaneously targeted (35).

Exploration of new key non-a-Gal antigens is currently

underway (36).
2.3 SLAs

SLAs are being discovered to play an important role in swine

innate and adoptive immune responses. In some sensitized kidney

transplant-waitlisted patients, some human leucocyte antigen

(HLA) antibodies cross-react with SLA class I (37). SLA II is

also a xenoantigen (38, 39). And triple (GGTA1, CMAH, B2M)

genes modified pigs expressed the SLA Ilow phenotype, which

effects on immune status and susceptibility to human immune

responses (40). In vitro human TNF-a could increase SLA I

expression, while human IL-17 could decrease TNF-a-mediated

SLA-I upregulation (41), and downregulation of SLA expression

decreases the strength of xenogeneic immune responses towards

renal tubular epithelial cells (42). These data may support the

SLA-silencing strategy application to prevent xenogeneic cellular

immune responses.
3 Blocking CD40L-CD40
co-stimulatory signals

Diversity and specificity of immunoglobulins suggests that

cellular and humoral immune responses are not separate entities,

but complementary components. T and B lymphocytes interact
TABLE 1 Critical progress in promoting kidney xenograft survival.

Discovery of xenoantigens

Carbohydrate antigen a-Gal

Non-a-Gal

Proteantigen SLA

Investigation into key co-stimulatory signal pathways

Anti-CD40/anti-CD40L

Establishment of genetically engineered pigs

CRISPR/Cas9//Human CD55, CD59, CD46, CD39

Immune tolerance induction by chimerism

“Thymus kidney”

Bone marrow/Hematopoietic cells

Research interests
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to activate and differentiate into effector cells under specific

circumstances. During this process, co-stimulatory signals, such

as cluster of differentiation (CD) 40 and its ligand CD40L,

CD28-B7, and inducible T cell co-stimulator ligand (ICOS)

and its ligand ICOSL, play indispensable roles, and the effects

of CD40L-CD40 signaling on xenotransplantation have been

extensively investigated.

The 35 kDa polypeptide CD40 is mainly expressed in B

lymphocytes (43, 44). After CD40L was identified (44–46),

numerous in vivo and in vitro findings showed that the CD40L-

CD40 pathway is essential for T cell responses and specific antibody

production by B lymphocytes (47–52). The biological effects of anti-

CD40L mAb, as well as other related mAbs, including anti-CD80,

anti-CD86 mAbs, and biologicals, such as hCTLA4-Ig, have been

extensively studied in vitro and in vivo (53–55). Results suggest that

blocking the CD40-CD40L pathway, or combined blocking of the

CD28-B7 signal could effectively inhibit T cell activation and

suppress the production of specific antibodies.

Data from pig to non-human primates (NHPs) organ

xenotransplants reveal that anti-CD40L mAb suppresses CD40-

CD40L co-stimulatory signals and decreases T cell-mediated

immune responses, whereas natural anti-Gal antibodies are

detectable at baseline (56). The application of anti-CD40L mAbs

to NHPs is safe (57, 58) and blocking the CD40L-CD40 signal

might induce immune nonresponse to a xenotransplant (59, 60);

thus, prolonging xenograft survival (61–64). By comparison, co-

stimulation blockades with an anti-CD40L agent is more successful

than with an anti-CD40 agent (65–67).

Currently, the immunosuppressive regimen based on the

blockade of the CD40-CD40L co-stimulation pathway is

considered as an extremely important development in the

xenotransplantation. As a biological agent, the affinity and

effective doses of these mAbs for individuals, the mechanism of

action, and the potential side effects, require further investigation.
4 Genetically engineered
pig establishment

Expression of the end-stage complement suppressor human

CD59 seems to promote the survival of transplanted organs in vitro

(68, 69). The complement protein CD55 (decay acceleration factor)

regulates complements, whereas CD46 is an inhibitory regulator of

the complement system. Knocking human CD55, CD59, and CD46

into the pig genomes resulted in their expression in vascular

endothelial cells and suppressed damage caused by complement

activation (70). Cynomolgus monkeys that received GGTA1-/-/

CD55 transgene (Tg) pig kidneys survived for >90 days (71),

which was surprising at the time. This also suggested that human

CD55 knock-in promotes xenograft survival, in addition to

preventing ureteral stenosis. Recipient rhesus monkeys with low

levels of anti-pig antibodies were screened as recipients of GTKO/

human CD55 Tg pigs’ kidneys, and the anti-CD40L mAbs applied

after transplantation and conventional immunosuppressive

protocol resulted in the recipients surviving for >125 days (72).
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Thrombomodulin, endothelial protein C receptors, CD39, and

other factors function in the regulation of human coagulation.

Thrombomodulin and CD39 are involved in complement

activation and the coagulation cascade during heterogeneous

immune regulation (73–75). In the GTKO/human CD46, CD55,

thrombomodulin, endothelial protein C receptors, and CD39 Tg

porcine to baboon kidney xenotransplantation models, recipients

who received anti-thymocyte globulin (ATG) and anti-CD20 mAb

induction, along with anti-CD40 mAb-based immunosuppression

therapy survived for up to 136 days (76). In the GTKO/human

CD55 Tg porcine to rhesus monkey kidney xenotransplantation

models, rhesus monkeys with low antibody titers were selected,

some who received transient pan-T cell destruction and the anti-

CD40L mAb-based immunotherapy protocol survived for 405

days (77).

The obtained experience in kidney xenotransplantation of

genetically engineered pigs to NHPs has provided a solid

foundation for pre-clinical trials. The surgeries, a-Gal knockout
pigs to brain-dead patient kidney xenotransplantation, were

conducted in the USA in 2021, and the survival of xenografts was

54 (2) and 74 (3) h.
5 Tolerance induction by chimerism

5.1 Thymus co-transplantation

Attempts to induce immune tolerance in xenografts by multiple

low-dose xenoantigen inoculations have been unsuccessful.

Transplanting fetal porcine thymus and liver tissues into mice to

eliminate T and natural killer cells and removing the thymus

induces specific tolerance to porcine antigens (78). The mouse

CD4+ T cell repertoire developed in implanted pig thymus grafts

indicated positive selection by porcine (xenogeneic) MHC antigens

and negative selection by both mice (recipients) and porcine MHC;

this suggested a high level of tolerant immunocompetence (79–81).

Findings of kidney allotransplantation in large animals have

indicated that the thymus is essential for rapid and stable

immune tolerance (82, 83), implying the potential value of

thymus transplants to induce tolerance.

The “thymus kidney” was invented by placing thymus tissues

under a kidney quilt to facilitate autologous thymus transplantation.

The results suggested that the abundance of peripheral

CD4+CD45RA+ T cells increased steadily from 30 to 150 days

after transplanting “thymus kidneys” into athymic micropigs, and

recipient pigs had acquired immune tolerance. Vascularized donor

thymus tissue can induce rapid and stable immune tolerance in

recipients to MHC-unmatched allograft (84–86).

In “thymus kidneys” xenotransplantation models, recipient

baboons transplanted with a “thymus kidney” graft from a

human CD55 Tg pig survived for 30 days, and live thymic

epithelial cells and thymic bodies, including a few baboon

lymphocytes, were discovered under the renal capsule and

omentum of the baboons. The “thymus kidney” can induce the

production of non-responsive donor-specific cells and stable

amounts of anti-a-Gal antibodies, thus inducing immune
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1242478
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu and He 10.3389/fimmu.2023.1242478
tolerance across the genetic immune barrier (87). Transplanting

GTKO pig kidneys with the vascular thymus into baboons

significantly extended recipients’ survival (88). Recipient baboons

with or without cortisol transplanted with “thymus kidneys” from

GTKO micropigs survived for >80 days with no signs of cellular

rejection or IgG deposition in the transplants and no loss of the

transplanted kidneys, suggesting establishment of donor-specific T

cell tolerance (89).

Fetal porcine thymus grafts containing mice thymic epithelial

cells implanted into mice improved the development of T cells in

the thymus, increased the likelihood that they would develop

tolerance to the grafts, and reconstructed the T cell population

(90). The method for preparing donor thymus grafts enriched with

recipient thymic epithelial cells in large animals (cynomolgus

monkeys and micropigs) was established (91). This should induce

the tolerance of transplanted solid organs, including the

kidneys (92).

Mouse T cell receptor–transgenic T cells can be functionally

educated using porcine MHC antigens (93). Human T cells develop

normally in porcine thymus grafts and form specific tolerance to

porcine MHC in immunodeficient mice (94). However, a mouse

with a transplanted porcine thymus would develop analogous

autoimmune diseases, in which mouse CD4+ T cells play a key

role (95). Therefore, the differentiation of host T precursor cells in

the porcine thymus should differ from the normal physiological

state. The number of Tregs in the athymic mice that were grafted

with porcine thymus was close to normal, but the regulatory

function was not (96). Moreover, T cell differentiation in

humanized mice after bone marrow (BM) transplantation

revealed that the positive selection was inadequate (97).

These findings should be helpful for thymus transplantation in

large animals. Autologous thymus tissues were co-transplanted with

GTKO porcine kidneys in the clinical trial of transplantation in two

brain-dead patients (2). The results exceeded expectations; however,

the mechanisms of tolerance induction need to be further explored.
5.2 BM or hematopoietic cell
co-transplantation

Transplanted BM or hematopoietic cells can establish chimera-

induced tolerance (98). Long-term survival has been achieved using

kidneys co-transplanted with BM (99). Moreover, the role of

CD4+CD25+FoxP3+Treg cells in these results cannot be ignored

(100–102).

Simon et al. (103) injected large doses of porcine spleen cells

into baboons and found that low-level chimera status was

maintained for almost 1.5 years, during which the baboons did

not get sick. These results suggested that donor leukocyte infusion

can be used to induce per iphera l to l erance dur ing

xenotransplantat ion. Perhaps infusing BM cel ls with

differentiation potential would be more advantageous for

establishing chimera-induced immune tolerance.

Griesemer et al. found that baboons transplanted with GTKO

BM alone in vivo developed peripheral chimeras within 28 days, and

the abundance of anti-GTKO porcine antibody or porcine-specific
Frontiers in Immunology 05
cytotoxicity did not increase. However, anti-porcine and other

specific antibodies appeared 14 days after transplantation in

baboons that were co-transplanted with BM cells and kidneys,

and relatively high levels of anti-Gal antibodies were detected

when the porcine kidney was rejected (104). These data suggested

that BM infusion is associated with a loss of anti-Gal antibodies. To

improve chimerism, the infusion method was modified, and the

results were successful, the donor pig kidneys in the two groups

survived for 47 and 60 days, respectively (105).

The cell- and species-specific CD47/Signal regulatory protein a
(Sirp-a) signaling pathway might be involved in clearing cells

derived from porcine BM cells in recipients. Porcine BM

transferred the human CD47 gene survived much longer in a

recipient baboon, and the chimeras prolonged the survival of

porcine skin grafts (106).
6 Research interests

In the past decades, many solutions have been applied to solve

the ethics and theoretical issues in kidney xenotransplantation, and

the breakthrough achieved are encouraging. In addition to

immunology-related issues, the transmission of porcine

xenotransplantation-relevant viruses (such as porcine endogenous

retroviruses, PERV) were well controlled (107). However, whether

PERV remains inactivated depends on the stability of porcine

genomes after modified by CRISPR/Cas 9 technique.

Comprehensive analysis suggested that, these following issues

should be studied in deepth for a better survival of kidney xenografts.
6.1 Gene-editing techniques should
be perfected

Although CRISPR/Cas9 technology is widely applied, it has

some limitations, such as off-target effects, low delivery efficiency,

and the immune heritability of Cas9 protein. Any unexpected

changes in the human (or xenograft) genome could result in

serious and unintended consequences, including the activation of

proto-oncogenes and production of new single nucleotide

polymorphisms that can alter cellular behavior. In addition, >60%

of the population harbors components of humoral and cellular

immune responses to Cas9. Therefore, if sustained, Cas9 expression

is required during treatment and the immune response induced by

the Cas9 must be considered (108). Improvements in CRISPR/Cas9

technology will be conducive to the long-term outcome of clinical

kidney xenotransplantation (109).
6.2 Deeply investigate the rejection
mechanisms of xenotransplantation

6.2.1 Porcine carbohydrate antigens
NHPs often serve as transplant recipients to determine the efficacy

of xenotransplantation. However, the expression profile of a-Gal in
NHPs differs from that in humans (110). Therefore, data from NHPs
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can only provide a reference for clinical xenotransplantation.

Techniques have been developed to knock out multiple porcine

genes (33, 111). However, recent data indicated that the loss of the

non-Gal antigen, Neu5Gc, is associated with increased humoral

rejection in pig-baboon kidney xenotransplants (112, 113).

Therefore, an in-depth investigation of porcine carbohydrate

antigens might provide a more comprehensive understanding of

their roles in xenotransplantation.
6.2.2 The function and mechanism of
novel molecules

In the most recent GTKO pig-baboon kidney xenotransplantation

with an anti-CD40 mAb-based immunosuppressive regimen, results

indicated that ATG and anti-CD20 mAb eliminated peripheral T and

B lymphocytes and inhibited lymphocyte recovery; a decreased

abundance of memory CD8+ T cells might determine long-term

outcomes (114). The hCD47 expression in porcine endothelial cells

and podocytes reduced the phagocytic effects of human and baboon

macrophages on porcine endothelial cells and podocytes by rectifying

the inter-species incompatibility of CD47/Sirp-a signaling (115).

Results suggest that the expression of human CD47 in donor pig

renal glomerular cells might be an important strategy for preventing

proteinuria after xenotransplantation. The results of an in vivo study

suggested that porcine podocytes expressing hCD47 inhibit the

development of albuminuria in GTKO/hCD47 Tg pig-baboon

kidney xenotransplantation (116). The underlying mechanism

deserves more intensive investigation.

6.2.3 Each type of immune cell involving
xenograft rejection

In addition to T and B lymphocyte, monocyte, macrophages,

neutrophils, and natural killer (NK) cells should all involve in the

initiation and advancements of rejection and outcome of

xenografts. Nevertheless, we are just scratching the surface of the

iceberg about the function and mechanisms of each type of cells. For

instance, NK cells may play an effector role by releasing cytotoxicity

granules against xenogeneic cells, or an affector role on other

immune cells through cytokine secretion (117), and much work

need to be carried out to promote xenograft acceptance by driving

NK cells (118).

6.2.4 The discrepancy in metabolism between
kidney xenograft donors and human

Pigs, NHPs, and humans significantly differ biologically and

physiologically (119–121). All findings suggested that specific

immune tolerance induction or immunosuppression regimen

need to be developed, and immune mechanism of chronic

rejection needs to be explored from multi-angle exploration.

Accumulating evidence suggests that various metabolites and

metabolic networks intersect with the induction, regulation, and

maintenance of trained immunity (122). Metabolism and the

immunological state are inextricably linked, and immunometabolism

is recognized as a major mechanism that is central to adaptive and

innate immune regulation (123). Now, whether, which, and how

metabolites are involved in immune regulation of kidney xenografts
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remains to be determined. Kidney xenografts grow abnormally in hosts

like any other xenograft. The threshold for the ratio of transplanted

kidney volume to host body weight is 25 cm2/kg; beyond this threshold,

kidney xenografts become ischemic (124). This phenomenon reflects

physiological differences between GTKO pigs and baboons and more

importantly, a link between metabolism and the renal xenograft

immune response. This is confirmed by the results that rituximab

and CTLA4Ig might confer benefits in terms of symptomatic

treatments (125–127).
7 Conclusion

Compared with the understanding of the alloimmune response,

that of the heterologous immune mechanism is still in its infancy

(128, 129). We believe that a deeper understanding of immunological

theories and the development of techniques will continue to promote

the progress of kidney xenotransplantation. Further studies of

immunomechanisms in kidney xenotransplantation might help to

promote the survival of kidney xenografts.
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